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bstract

A computational model for the prediction of solubilizers’ effect on drug partitioning has been developed. Membrane/water partitioning was
valuated by means of immobilized artificial membrane (IAM) chromatography. Four solubilizers were used to alter the partitioning in the IAM
olumn. Two types of molecular descriptors were calculated: 2D descriptors using the MOE software and 3D descriptors using the Volsurf software.
tructure–property relationships between each of the two types of descriptors and partitioning were established using partial least squares, projection

o latent structures (PLS) statistics. Statistically significant relationships between the molecular descriptors and the IAM data were identified. Based
2 2
n the 2D descriptors structure–property relationships R Y = 0. 99 and Q = 0.82–0.83 were obtained for some of the solubilizers. The most important

escriptor was related to log P. For the Volsurf 3D descriptors models with R2Y = 0.53–0.64 and Q2 = 0.40–0.54 were obtained using five descriptors.
he present study showed that it is possible to predict partitioning of substances in an artificial phospholipid membrane, with or without the use
f solubilizers.

2006 Elsevier B.V. All rights reserved.
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. Introduction

In drug discovery the introduction of combinatorial chem-
stry and high throughput screening methods has led to changes.
ocusing on in vitro activity in high throughput screening gen-
rates high-potency compounds, but often it is at the expense
f traditional biopharmaceutical properties such as lipophilic-
ty or solubility (Lipinski et al., 1997). Computational methods
ased on simple descriptors are a promising alternative to early
rug discovery experimental methods (Matsson et al., 2004).
here is a demand for fast prediction of absorption, distribution,
etabolism and excretion properties (ADME). The use of com-

utational methods for estimating ADME properties based on

olecular parameters have emerged to meet this demand (van

e Waterbeemd and Gifford, 2003).

∗ Corresponding author. Tel.: +45 3958 5901; fax: +45 3969 2866.
E-mail address: jah@ferrosan.com (J. Hoest).

i
n
t
o
t
3
T

378-5173/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
oi:10.1016/j.ijpharm.2006.08.020
iptors; Structure–property relationship

As most drugs are absorbed into the systemic circulation by
ays of passive transcellular transport, screening for the ability

o cross-membranes is an important step in the drug development
rocess. A key element in membrane permeation is the partition-
ng of the compound between the membrane and the surrounding
queous phase. Immobilized artificial membrane (IAM) chro-
atography, a technique which uses phospholipids as the sta-

ionary phase, is in general designated to evaluate partitioning
etween an aqueous compartment and phospholipids (Pidgeon
nd Venkataram, 1989; Pidgeon et al., 1995; Yang et al., 1997).

The purpose of the present study was to develop a com-
utational method for the prediction of drug partitioning in
embranes influenced by solubilizers. This was done by exam-

ning the partitioning in an IAM system in the presence of a
umber of different solubilizers. We selected eighteen struc-
urally diverse test compounds. For each compound two types

f molecular descriptors were calculated, 2D descriptors with
he MOE software (Chemical Computing Group Inc., 2006) and
D descriptors with the Volsurf software (Cruciani et al., 2000b).
he results from the IAM study were analyzed in relation to the

mailto:jah@ferrosan.com
dx.doi.org/10.1016/j.ijpharm.2006.08.020
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olecular descriptors using partial least squares projection to
atent structures (PLS).

. Materials and methods

An overview of the experimental strategy is given in Fig. 1.

.1. Selection of test compounds

Eighteen structurally diverse compounds were selected based
n Volsurf descriptors. The compound database used in the
xperimental design consisted of 1869 compounds. About 1831
f the structures were derived from Taub et al. (1997). The
emaining structures were derived from an in-house database
onsisting mostly of drug-like compounds.

.2. Chemicals

The test compounds used in the study were: 3-chloro-
henylacetic acid and 3-hydroxyphenylacetic acid (Sigma–
ldrich Chemie, Germany); l-phenylalanine, trans-cinnamic

cid, hypoxanthine, timolol, maleate salt and cis-1,3-pentadiene
Sigma Chemical Co., USA); 4-(methylsulfonyl)benzoic acid
Aldrich Chem. Co., USA); pyrrole and sulfanilamide (Fluka
hemie AG, Switzerland); 4-aminophenol, hydrocortisone,

ndigo carmine, nicotinic acid methyl ester, prednisolone phos-
hate, amaranth, phenobarbital and carbamazepine. The solubi-
izers used were: dodecyl sulfate sodium salt (SDS) (Merck,

ermany); Tween 20 (Unikem, Denmark); glycocholic acid

Sigma Chemical Co., USA) and ethanol. Phosphate buffered
aline (PBS) (Life Technologies, UK) was used as blind. The
tructures of the tested compounds are shown in Fig. 2.

c

a
h

Fig. 1. Experimen
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.3. Immobilized artificial membrane experiments

An IAM.PC.DD2 10 cm × 4.6 mm, 12 �m, 300 Ang. column
Regis Technologies, USA) was employed in the experiments.
.01 M PBS, pH 6.50, aqueous solution with 0.10% ethanol,
.01% SDS, 0.01% Tween 20 or 0.001% glycocholic acid were
sed as the mobile phase in the experiments. The test compounds
ere dissolved in the mobile phase. The column was equilibrated
h prior to the studies. Flow rate was 1.0 ml/min, injection was
0 �l 0.01 M and UV absorbance was measured for detection.

.4. Computational methods

Molecular structures were built in extended conformations
sing the Sybyl molecular modeling system (Version 6.6)
Tripos Assosiates Inc., 2000) and the energy was minimized
sing the Tripos Force Field (Clark et al., 1989). The dielec-
ric constant was four. Partial atomic charges were calculated in
partan (Version 5.0) (Wavefunction Inc., 1997) before the 2D
olecular descriptors were calculated with the MOE-program

Chemical Computing Group Inc., 2006) and the 3D descrip-
ors were calculated with Volsurf (Version 2.0.2) (Cruciani et
l., 1998; Discovery Ltd., 2000; Cruciani et al., 2000b).

A total of 146 2D descriptors were generated representing
he following types of descriptors: physical property descrip-
ors, surface area descriptors, atom and bond count descrip-
ors, connectivity and shape descriptors, adjacency and distance
escriptors, pharmacophore feature descriptors, and partial

harge descriptors (Xue et al., 2003).

Fifty-six 3D descriptors were computed with Volsurf
nd they describe molecular properties like shape and size,
ydrophilic/hydrophobic areas, interactions and balance and a

tal strategy.
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Fig. 2. Structures of the 1

omplex parameter describing the ability to form micelles. A
horough explanation of the descriptors is reported in the litera-
ure (Cruciani et al., 1998, 2000a,b).

.5. Data analysis and statistics

The data analysis was performed by means of PLS using the
oftware Simca-P (Version 8.0 and 10.5) (Wold, 1995). The IAM
ata was changed to a logarithmic scale prior to data analyses,

ubmitted to unit variance scaling and mean centering. Differ-
nt analyses were performed for each of the experimental data
sing the descriptors as Y-data. PLS is very useful for analyzing
ultivariate data that are correlated, coliniar or have missing

3

f

pounds used in the study.

bservations. The method transforms data, in this study the 56
olsurf descriptors and 146 MOE descriptors, respectively, into
few new X-values. The correlation between these new X-data

nd the Y-data (the experimental data) is then identified. R2Y is
he portion of variance explained by the PLS model, and Q2 is
measure of the predictive power of the model.

. Results
.1. Diversity of data set

The 18 compounds studied experimentally were selected
rom the 1869 compounds based on the Volsurf generated 3D
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ig. 3. PC 1 + 2 from PCA (MOE-descriptors) of 1869 compounds used for
election. The 18 compounds selected for the test set are highlighted.

escriptors. Since the test set has been selected solely on the
olsurf 3D descriptors, it is interesting to see if the compounds
re representative if considering the MOE 2D descriptors, too.

The full data set (1869 compounds) was analyzed for the
OE-descriptors. Figs. 3 and 4 show the first four components

f the principal component analysis (PCA). The 18 compounds
omprising the test set have been highlighted in the plot, which
onfirms that these compounds represent the full data set well.

.2. IAM chromatography

The capacity factors (KIAM) shown in Table 1 were calculated
n the basis of the retention times (Rt) and are proportional to

he partitioning (Eq. (1)). The capacity factor is the retention
ime relative to the void volume. If the capacity factor is high,
he test compound prefers the stationary membrane-like phase
o the mobile phase. Citric acid was used for determination of

c
t
t
a

able 1
apacity factors (KIAM) of the IAM-study

ompound Control (PBS) SDS

maranth 25.0 ± 0.3 7.685 ± 0.169
arbamazepine 47.5 ± 0.1 48.3 ± 0.2
is-1.3-pentadiene 5.79 ± 0.01 7.77 ± 0.04
ydrocortisone 40.0 ± 1.5 31.2 ± 1.2
ypoxanthine 0.244 ± 0.000 0.188 ± 0.006

ndigo carmine 13.2 ± 0.1 10.1 ± 0.1
-Chlorophenylacetic acid 1.07 ± 0.00 0.170 ± 0.004
-Hydroxyphenylacetic acid 0.296 ± 0.071 1.78 ± 0.01
icotinic acid, methylester 1.88 ± 0.00 1.97 ± 0.01
-Aminophenol 0.630 ± 0.000 1.02 ± 0.01
henobarbital 6.24 ± 0.02 4.78 ± 0.02
henylalanine 0.212 ± 0.009 0.253 ± 0.004
-Methylsulfonylbenzoic acid 0.163 ± 0.000 0.688 ± 0.005
rednisolonephosphoric acid 7.83 ± 0.10 1.40 ± 0.01
yrrole 0.844 ± 0.000 0.935 ± 0.006
ulfanilamide 0.733 ± 0.000 0.493 ± 0.005
imolol 8.08 ± 0.01 n.d.
rans-cinnamic acid 1.09 ± 0.00 0.253 ± 0.004

.d.; not determined due to laboratory problems.
ig. 4. PC 3 + 4 from PCA (MOE-descriptors) of 1869 compounds used for
election. The 18 compounds selected for the test set are highlighted.

he void volume.

IAM = Rtcompound − Rtcitric acid

Rtcitric acid
(1)

The rank order of the test compounds were not significantly
nfluenced by the type of solubilizer. Void volume and retention
imes (not shown) changed with the type of solubilizer used, but

IAM remained unchanged.

.3. Models for structure–property relationships

Statistically significant models for prediction of the IAM

apacity factors were identified based on the 2D and 3D descrip-
ors, respectively. The statistically significant models explaining
he relationships between molecular structures and the IAM data
re illustrated in Table 2.

Glycocholate Ethanol Tween 20

13.5 ± 3.3 20.0 ± 0.6 7.113 ± 1.581
37.5 ± 0.4 43.4 ± 0.2 25.8 ± 1.3
5.77 ± 0.02 5.55 ± 0.01 7.84 ± 0.26
27.6 ± 0.1 34.5 ± 0.7 12.1 ± 0.6

0.230 ± 0.003 0.213 ± 0.000 0.255 ± 0.034
5.42 ± 0.05 10.2 ± 0.1 6.944 ± 1.151

0.853 ± 0.012 1.01 ± 0.00 0.890 ± 0.101
0.222 ± 0.003 0.235 ± 0.000 0.245 ± 0.034

1.61 ± 0.01 1.69 ± 0.00 1.13 ± 0.06
0.622 ± 0.043 0.566 ± 0.000 0.671 ± 0.039

5.25 ± 0.09 5.79 ± 0.00 5.79 ± 0.19
0.215 ± 0.003 0.199 ± 0.000 0.235 ± 0.034
0.148 ± 0.003 0.140 ± 0.000 0.194 ± 0.033
4.82 ± 0.02 7.04 ± 0.01 4.91 ± 0.35

0.913 ± 0.016 0.806 ± 0.004 1.15 ± 0.07
0.645 ± 0.009 0.654 ± 0.000 0.777 ± 0.041

7.02 ± 0.02 6.98 ± 0.02 2.89 ± 0.11
0.878 ± 0.008 0.995 ± 0.004 0.795 ± 0.041
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Table 2
PLS models for prediction of solubilizers’ effect on drug partitioning

Enhancer Volsurf 3D descriptors MOE 2D descriptors

R2Y Q2 R2Y Q2

Control (PBS) 0.64 0.54 0.99 0.83
SDS n.s. n.s. 0.32 0.13
Glycocholate 0.49 0.49 0.99 0.82
Ethanol 0.53 0.53 0.99 0.83
Tween 20 0.40 0.40 0.99 0.83
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or each solubilizer R2 and Q2 values of models with variable selection have
een listed. The descriptors making only minor contributions to the models
typically VIP < 0.8 and 1.0) were eliminated. n.s.: no significance.

The PLS analysis of the MOE 2D descriptors revealed R2Y
nd Q2 values on 0.99 and 0.82–0.83, for the control, glycocholic
cid, ethanol and Tween 20 data. Some of the descriptors were
nsignificant in the model and therefore disposed.

The loadings plots (not shown) indicate the relative impor-
ance of the descriptors. Although the loadings plots for the
hree enhancers, glycocholate, ethanol and Tween 20, and the
ontrol are different, they all show that S log P is the most impor-
ant descriptor. The S log P descriptor is the log values of the
ctanol/water partition coefficient calculated by an atomic con-
ribution model (Wildman, 1999).

Analysis using the Volsurf descriptors gave a different pic-
ure. R2Y values range from 0.40 to 0.64 and Q2 was 0.40–0.54.
he Volsurf descriptors have previously been very successful in
redicting intestinal lymphatic transfer (Holm and Hoest, 2004),
here passive diffusion across a phospholipids membrane also

s the primary process. Though there was a significant relation-
hip between descriptors and experimental results, in this study
he relationship was less pronounced.

The loading plot (not shown) revealed that surface area (S),
olume (V), surface/volume ratio (R) and two hydrophobic sur-

ace area descriptors (D1 and D2) were useful in the model.
n illustration of the variable importance on projection (VIP)

s shown in Fig. 5. The figure shows D1 and D2 were not as
rucial to the model as the size-related descriptors (V, S and R).

ig. 5. VIP-coefficients for the Volsurf descriptors; volume (V), volume/surface
rea ratio (R), surface area (S), hydrophobic area at two different interaction
nergy levels (D1 and D2) for the four solubilizers and the PBS reference.
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t is important to note that the patterns of the VIP plots were sim-
lar regardless of the type of solubilizer used. These similarities
mply an analogous mechanism in the retention of compounds.

. Discussion

The solubilizers (or transport enhancers) used in the study
re well known to affect the transcellular transport of com-
ounds (Aungst et al., 1996; LeCluyse and Sutton, 1997; Xia and
nyuksel, 2000) in different ways (Ganem et al., 1997). SDS,
ween 20 and glycocholate are surfactants and their amphiphilic
haracteristics enable them to perturb phospholipid membranes.
ween 20 affects the phosphoric part of the membrane, but at
elatively higher concentrations than SDS (Anderberg et al.,
992). In high concentrations, SDS is in fact strong enough to
issolve biological membranes and is characterized as harm-
ul (Muranishi, 1990). SDS is considered difficult to use in
harmaceutics, however, it is found to be a safe permeation
nhancer at 0.35–0.70 mM (rat jejunum) (Legen et al., 2006).
lycocholate primarily acts by altering the structure of the mem-
rane (Schubert et al., 1983). Glycocholate is a solubilizer with
elatively low toxicity and good transport enhancing properties
Lindhardt and Bechgaard, 2003).

Ethanol is a small polar molecule, which works by penetrat-
ng the polar head groups of the phospholipids, thereby altering
he barrier function of the membrane. Ethanol also changes the
hysiochemical properties of both the membrane phase and the
urrounding water layer. These actions occur even at low con-
entrations, and at higher concentrations of ethanol irreversible
amage to membranes occurs.

The solubilizers have an effect on the transport across mem-
ranes, and the effect on the IAM column is obvious from the
etention times. The effect is, however, less pronounced when
onsidering capacity factors. Though solubilizers allegedly
ffect the membrane phase, the void volume, which is strongly
nfluenced by the aqueous phase, varied depending on the solu-
ilizer used.

It is well known that molecules are generally flexible and
ay adopt different conformations, which each contribute to

he physicochemical properties. Previously, a dynamic approach
hich uses different methods of generating conformations and

he Boltzmann weighted average to predict properties from
olecular structures have been used (Norinder et al., 1997;
rarup et al., 1998; Kelder et al., 1999; Alifrangis et al., 2000).
f course the use of static molecular structures is debatable, but,
enerally, studies using the Boltzmann weighted average have
ot led to a significant improvement in the prediction power and,
onsequently, a static approach is used in this study.

It is not surprising that volume and surface area is impor-
ant in this prediction model. Small molecules penetrate mem-
ranes easier than large molecules (Xiang and Anderson, 1994;
amenisch et al., 1996). The volume/surface ratio (R), which
lso holds predictive value, relates to the globularity of the

ompounds because spherical molecules have a larger vol-
me/surface ratio than elongated molecules. Additionally, R
elates to size, since smaller molecules generally have a smaller
olume/surface ratio. This is in accordance with “the rule of
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ve” regarding prediction of permeability and drug absorption
uggested by Lipinski et al. (1997), where the size is described
y molecular weight.

The rule of five also uses hydrogen donors and acceptors in
he inclusion criteria, which corresponds nicely with the use of
escriptors D1 and D2. These descriptors are associated with
he difference in surroundings between the aqueous phase and
embrane phase. Nitrogen, oxygen and connected hydrogen

toms have the ability to form intermolecular hydrogen bonds
n contrast to atoms possessing more hydrophobic characteris-
ics. The hydrogen bonds must be broken in order for molecules
o be able to enter the membrane phase, and therefore hydropho-
ic molecules without intermolecular hydrogen bonds penetrate
embranes more easily. The hydrophilic (polar) surface area

ossesses a scientifically accepted predictor of permeability
Palm et al., 1998; Winiwarter et al., 1998; Krarup et al., 1998).

Log P is a predictor of membrane permeability. It is addi-
ionally used in the rule of five mentioned earlier. The fact that
he S log P turned out to be the most important MOE descriptor
s therefore of no surprise. Though it seems obvious, the use
f log P as a predictor in systems using solubilizers/transport
nhancers, is a novel approach. Statistically significant predic-
ion models were obtained, though the SDS model was very
eak.
A set of 18 compounds was used for deriving these models

nd significance was identified. The prediction models are statis-
ically significant, but they cannot be characterized as powerful.
he models should not be applied to larger data sets without
aution.

Future investigations should aim to identify the solubiliz-
rs’ effect on permeability/partitioning in other in vitro systems.
ultivated cell monolayers, like MDCK cells or Caco-2 cells,
re simple systems, but they are complex compared to the
AM system. Transport enhancers functioning through differ-
nt mechanisms may be expected to show dissimilar effects in
ore complex systems. The IAM system is a relatively simple

ystem, perhaps too simple to identify differences between the
olubilizers. A more complicated experimental model should be
sed for future discriminations between solubilizers.
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